Physics – Condensed Matter – Statistical Mechanics
Scientific paper
2006-03-03
Physics
Condensed Matter
Statistical Mechanics
8 pages including 5 figures
Scientific paper
In three dimensions, or more generally, below the upper critical dimension, scaling laws for critical phenomena seem well understood, for both infinite and for finite systems. Above the upper critical dimension of four, finite-size scaling is more difficult. Chen and Dohm predicted deviation in the universality of the Binder cumulants for three dimensions and more for the Ising model. This deviation occurs if the critical point T = Tc is approached along lines of constant A = L*L*(T-Tc)/Tc, then different exponents a function of system size L are found depending on whether this constant A is taken as positive, zero, or negative. This effect was confirmed by Monte Carlo simulations with Glauber and Creutz kinetics. Because of the importance of this effect and the unclear situation in the analogous percolation problem, we here reexamine the five-dimensional Glauber kinetics.
El-Astal Ali H.
Shabat M. M.
Stauffer Dietrich
Sumour Muneer A.
No associations
LandOfFree
Reexamination of scaling in the five-dimensional Ising model does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Reexamination of scaling in the five-dimensional Ising model, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reexamination of scaling in the five-dimensional Ising model will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-118276