Reciprocal locomotion of dense swimmers in Stokes flow

Physics – Condensed Matter – Soft Condensed Matter

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

10.1088/0953-8984/21/20/204103

Due to the kinematic reversibility of Stokes flow, a body executing a reciprocal motion (a motion in which the sequence of body configurations remains identical under time reversal) cannot propel itself in a viscous fluid in the limit of negligible inertia; this result is known as Purcell's scallop theorem. In this limit, the Reynolds numbers based on the fluid inertia and on the body inertia are all zero. Previous studies characterized the breakdown of the scallop theorem with fluid inertia. In this paper we show that, even in the absence of fluid inertia, certain dense bodies undergoing reciprocal motion are able to swim. Using Lorentz's reciprocal theorem, we first derive the general differential equations that govern the locomotion kinematics of a dense swimmer. We demonstrate that no reciprocal swimming is possible if the body motion consists only of tangential surface deformation (squirming). We then apply our general formulation to compute the locomotion of four simple swimmers, each with a different spatial asymmetry, that perform normal surface deformations. We show that the resulting swimming speeds (or rotation rates) scale as the first power of a properly defined "swimmer Reynolds number'', demonstrating thereby a continuous breakdown of the scallop theorem with body inertia.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Reciprocal locomotion of dense swimmers in Stokes flow does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Reciprocal locomotion of dense swimmers in Stokes flow, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reciprocal locomotion of dense swimmers in Stokes flow will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-492828

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.