Physics – Condensed Matter – Disordered Systems and Neural Networks
Scientific paper
2000-11-29
Physics
Condensed Matter
Disordered Systems and Neural Networks
5 pages, 3 figures. Submitted to PRE
Scientific paper
10.1103/PhysRevE.63.036131
Stretched exponential relaxation ($\exp{-(t/\tau)}^{\beta_K}$) is observed in a large variety of systems but has not been explained so far. Studying random walks on percolation clusters in curved spaces whose dimensions range from 2 to 7, we show that the relaxation is accurately a stretched exponential and is directly connected to the fractal nature of these clusters. Thus we find that in each dimension the decay exponent $\beta_K$ is related to well-known exponents of the percolation theory in the corresponding flat space. We suggest that the stretched exponential behavior observed in many complex systems (polymers, colloids, glasses...) is due to the fractal character of their configuration space.
Campbell Ian
Jullien Remi
Jund Philippe
No associations
LandOfFree
Random walks on fractals and stretched exponential relaxation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Random walks on fractals and stretched exponential relaxation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Random walks on fractals and stretched exponential relaxation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-398042