Random Levy Matrices Revisited

Physics – Condensed Matter – Statistical Mechanics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

18 pages, 14 figures, added: comparison of BC's and our equations; discussion on spectral stability and maximal entropy princi

Scientific paper

We compare eigenvalue densities of Wigner random matrices whose elements are independent identically distributed (iid) random numbers with a Levy distribution and maximally random matrices with a rotationally invariant measure exhibiting a power law spectrum given by stable laws of free random variables. We compute the eigenvalue density of Wigner-Levy (WL) matrices using (and correcting) the method by Bouchaud and Cizeau (BC), and of free random Levy (FRL) rotationally invariant matrices by adapting results of free probability calculus. We compare the two types of eigenvalue spectra. Both ensembles are spectrally stable with respect to the matrix addition. The discussed ensemble of FRL matrices is maximally random in the sense that it maximizes Shannon's entropy. We find a perfect agreement between the numerically sampled spectra and the analytical results already for matrices of dimension N=100. The numerical spectra show very weak dependence on the matrix size N as can be noticed by comparing spectra for N=400. After a pertinent rescaling spectra of Wigner-Levy matrices and of symmetric FRL matrices have the same tail behavior. As we discuss towards the end of the paper the correlations of large eigenvalues in the two ensembles are however different. We illustrate the relation between the two types of stability and show that the addition of many randomly rotated Wigner-Levy matrices leads by a matrix central limit theorem to FRL spectra, providing an explicit realization of the maximal randomness principle.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Random Levy Matrices Revisited does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Random Levy Matrices Revisited, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Random Levy Matrices Revisited will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-484527

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.