Physics – Condensed Matter – Materials Science
Scientific paper
2012-01-30
Physics
Condensed Matter
Materials Science
Scientific paper
Using a magnetic resonance force microscope (MRFM), the power emitted by a spin transfer nano-oscillator consisting of a normally magnetized Py$|$Cu$|$Py circular nanopillar is measured both in the autonomous and forced regimes. From the power behavior in the subcritical region of the autonomous dynamics, one obtains a quantitative measurement of the threshold current and of the noise level. Their field dependence directly yields both the spin torque efficiency acting on the thin layer and the nature of the mode which first auto-oscillates: the lowest energy, spatially most uniform spin-wave mode. From the MRFM behavior in the forced dynamics, it is then demonstrated that in order to phase-lock this auto-oscillating mode, the external source must have the same spatial symmetry as the mode profile, i.e., a uniform microwave field must be used rather than a microwave current flowing through the nanopillar.
Cros Vincent
Grollier Julie
Hamadeh Abdullah
Klein Olivier
Loubens Grégoire de
No associations
LandOfFree
Quantitative MRFM characterization of the autonomous and forced dynamics in a spin transfer nano-oscillator does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Quantitative MRFM characterization of the autonomous and forced dynamics in a spin transfer nano-oscillator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantitative MRFM characterization of the autonomous and forced dynamics in a spin transfer nano-oscillator will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-55970