Physics – Condensed Matter – Superconductivity
Scientific paper
2005-11-14
Low Temperature Physics, 32, 424-451 (2006) [Fizika Nizkikh Temperatur, 32, 561-595 (2006)]
Physics
Condensed Matter
Superconductivity
32 pages, 51 figures. Slight modifications to text, figures and references. A PDF file with higher-resolution figures is avail
Scientific paper
10.1063/1.2199446
This is a short review of the theoretical work on the two-dimensional Hubbard model performed in Sherbrooke in the last few years. It is written on the occasion of the twentieth anniversary of the discovery of high-temperature superconductivity. We discuss several approaches, how they were benchmarked and how they agree sufficiently with each other that we can trust that the results are accurate solutions of the Hubbard model. Then comparisons are made with experiment. We show that the Hubbard model does exhibit d-wave superconductivity and antiferromagnetism essentially where they are observed for both hole and electron-doped cuprates. We also show that the pseudogap phenomenon comes out of these calculations. In the case of electron-doped high temperature superconductors, comparisons with angle-resolved photoemission experiments are nearly quantitative. The value of the pseudogap temperature observed for these compounds in recent photoemission experiments has been predicted by theory before it was observed experimentally. Additional experimental confirmation would be useful. The theoretical methods that are surveyed include mostly the Two-Particle Self-Consistent Approach, Variational Cluster Perturbation Theory (or variational cluster approximation), and Cellular Dynamical Mean-Field Theory.
Kyung Bumsoo
Sénéchal David
Tremblay A. M. -S.
No associations
LandOfFree
Pseudogap and high-temperature superconductivity from weak to strong coupling. Towards quantitative theory does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Pseudogap and high-temperature superconductivity from weak to strong coupling. Towards quantitative theory, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pseudogap and high-temperature superconductivity from weak to strong coupling. Towards quantitative theory will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-219281