Physics – Condensed Matter – Soft Condensed Matter
Scientific paper
2003-12-03
Phys. Rev. E 70, 061804 (2004)
Physics
Condensed Matter
Soft Condensed Matter
17 pages, 7 figures, final version. to be published in PRE
Scientific paper
10.1103/PhysRevE.70.061804
Mean-field theory is used to model polyelectrolyte adsorption and the possibility of overcompensation of charged surfaces. For charged surfaces that are also chemically attractive, the overcharging is large in high salt conditions, amounting to 20-40% of the bare surface charge. However, full charge inversion is not obtained in thermodynamical equilibrium for physical values of the parameters. The overcharging increases with addition of salt, but does not have a simple scaling form with the bare surface charge. Our results indicate that more evolved explanation is needed in order to understand polyelectrolyte multilayer built-up. For strong polymer-repulsive surfaces, we derive simple scaling laws for the polyelectrolyte adsorption and overcharging. We show that the overcharging scales linearly with the bare surface charge, but its magnitude is very small in comparison to the surface charge. In contrast with the attractive surface, here the overcharging is found to decrease substantially with addition of salt. In the intermediate range of weak repulsive surfaces, the behavior with addition of salt crosses over from increasing overcharging (at low ionic strength) to decreasing one (at high ionic strength). Our results for all types of surfaces are supported by full numerical solutions of the mean-field equations.
Andelman David
Shafir Adi
No associations
LandOfFree
Polyelectrolytes Adsorption: Chemical and Electrostatic Interactions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Polyelectrolytes Adsorption: Chemical and Electrostatic Interactions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polyelectrolytes Adsorption: Chemical and Electrostatic Interactions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-187695