Physics – Condensed Matter
Scientific paper
2003-08-05
Physics
Condensed Matter
ten figures
Scientific paper
10.1103/PhysRevB.68.134202
Based on density-functional perturbation theory we have computed from first principles the photoelastic tensor of few crystalline phases of silica at normal conditions and high pressure (quartz, $\alpha$-cristobalite, $\beta$-cristobalite) and of models of amorphous silica (containig up to 162 atoms), obtained by quenching from the melt in combined classical and Car-Parrinello molecular dynamics simulations. The computational framework has also been checked on the photoelastic tensor of crystalline silicon and MgO as prototypes of covalent and ionic systems. The agreement with available experimental data is good. A phenomenological model suitable to describe the photoelastic properties of different silica polymorphs is devised by fitting on the ab-initio data.
Bernasconi Marco
Donadio Davide
Tassone Francesco
No associations
LandOfFree
Photoelasticity of crystalline and amorphous silica from first principles does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Photoelasticity of crystalline and amorphous silica from first principles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Photoelasticity of crystalline and amorphous silica from first principles will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-571607