Perturbation spreading in many-particle systems: a random walk approach

Physics – Condensed Matter – Statistical Mechanics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

10.1103/PhysRevLett.106.180601

The propagation of an initially localized perturbation via an interacting many-particle Hamiltonian dynamics is investigated. We argue that the propagation of the perturbation can be captured by the use of a continuous-time random walk where a single particle is traveling through an active, fluctuating medium. Employing two archetype ergodic many-particle systems, namely (i) a hard-point gas composed of two unequal masses and (ii) a Fermi-Pasta-Ulam chain we demonstrate that the corresponding perturbation profiles coincide with the diffusion profiles of the single-particle L\'{e}vy walk approach. The parameters of the random walk can be related through elementary algebraic expressions to the physical parameters of the corresponding test many-body systems.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Perturbation spreading in many-particle systems: a random walk approach does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Perturbation spreading in many-particle systems: a random walk approach, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Perturbation spreading in many-particle systems: a random walk approach will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-456629

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.