Physics – Condensed Matter – Statistical Mechanics
Scientific paper
2001-09-08
Phys. Rev. E 64, 066201 (2001)
Physics
Condensed Matter
Statistical Mechanics
11 pages, 7 figures, to be published in Phys. Rev. E
Scientific paper
10.1103/PhysRevE.64.066201
The aim of this work is to study the spectral statistics of the asymmetric rotor model (triaxial rigid rotator). The asymmetric top is classically integrable and, according to the Berry-Tabor theory, its spectral statistics should be Poissonian. Surprisingly, our numerical results show that the nearest neighbor spacing distribution $P(s)$ and the spectral rigidity $\Delta_3(L)$ do not follow Poisson statistics. In particular, $P(s)$ shows a sharp peak at $s=1$ while $\Delta_3(L)$ for small values of $L$ follows the Poissonian predictions and asymptotically it shows large fluctuations around its mean value. Finally, we analyze the information entropy, which shows a dissolution of quantum numbers by breaking the axial symmetry of the rigid rotator.
Manfredi V. R.
Salasnich Luca
No associations
LandOfFree
Pathological Behavior in the Spectral Statistics of the Asymmetric Rotor Model does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Pathological Behavior in the Spectral Statistics of the Asymmetric Rotor Model, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pathological Behavior in the Spectral Statistics of the Asymmetric Rotor Model will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-509143