Physics – Optics
Scientific paper
Jul 2004
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2004josaa..21.1261l&link_type=abstract
Optical Society of America Journal, Volume 21, Issue 7, pp. 1261-1276 (2004).
Physics
Optics
17
Adaptive Optics, Wavefront Sensors, Optical Phase Conjugation, Image Resolution, Image Reconstruction, Astronomical Telescopes, Optical Instruments, Statistical Analysis, Closed Loop Systems, Open Loop Systems, State-Space Methods, Phase Estimation, Adaptive Kalman Filters, Numerical Analysis
Scientific paper
Classical adaptive optics (AO) is now a widespread technique for high-resolution imaging with astronomical ground-based telescopes. It generally uses simple and efficient control algorithms. Multiconjugate adaptive optics (MCAO) is a more recent and very promising technique that should extend the corrected field of view. This technique has not yet been experimentally validated, but simulations already show its high potential. The importance for MCAO of an optimal reconstruction using turbulence spatial statistics has already been demonstrated through open-loop simulations. We propose an optimal closed-loop control law that accounts for both spatial and temporal statistics. The prior information on the turbulence, as well as on the wave-front sensing noise, is expressed in a state-space model. The optimal phase estimation is then given by a Kalman filter. The equations describing the system are given and the underlying assumptions explained. The control law is then derived. The gain brought by this approach is demonstrated through MCAO numerical simulations representative of astronomical observation on a 8-m-class telescope in the near infrared. We also discuss the application of this control approach to classical AO. Even in classical AO, the technique could be relevant especially for future extreme AO systems.
Conan Jean-Marc
Fusco Thierry
Kulcsár Caroline
Le Roux Brice
Mugnier Laurent M.
No associations
LandOfFree
Optimal control law for classical and multiconjugate adaptive optics does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Optimal control law for classical and multiconjugate adaptive optics, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optimal control law for classical and multiconjugate adaptive optics will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1013551