Physics – Condensed Matter – Materials Science
Scientific paper
Jan 2002
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2002iaf..confe.911b&link_type=abstract
IAF abstracts, 34th COSPAR Scientific Assembly, The Second World Space Congress, held 10-19 October, 2002 in Houston, TX, USA.,
Physics
Condensed Matter
Materials Science
Scientific paper
NanoSpace-1 (NS-1), due to be launched in late 2003 or early 2004 will test highly advanced Micro Systems Technology (MST) for space applications. These devices are highly miniaturized and optimized complete systems in the sense that all parts of the system are processed with MST and integrated as Multifunctional Microsystems (MMS). The very high level of miniaturization and multifunctionallity in the MMS, will enable easier access to space for nanosatellites to perform better scientific research. This new class of high performing small satellites will open areas for research that before only could be done with much larger and costly satellites. Many institutions, universities, and small countries will benefit greatly as that nanosatellites become more capable per mass unit and volume unit than other spacecraft. These new MMS/MST satellites will provide the ground for a better and less expensive exploration of space. NS-1 will be the first high-performing nanosatellite by using MST/MMS to many subsystems and modules. The whole spacecraft will be built around MMS and will include multifunctional 3D-Multi Chip Modules (3D-MCM), a 3D thin film solar sensor, thin film coating for passive thermal control, variable emittance panels, microwave MEMS patch antennas, micromechanical thermal switches, thin film solar cells with record high efficiency and finally silicon as multifunctional active structure elements. The complete spacecraft will weigh about 7 kg and have dimensions of 32x32x15 cm. The overall mission for NS-1 is to test the new technologies mentioned above, and to collect experiences in the field of MMS architecture. However, new technologies in itself will not take us to a new generation spacecraft. Deeply integrated within the structure of the NanoSpace program are new system designs and multifunctional systems thinking. Distributed and autonomous subsystems are very important when incorporating new technologies with high redundancy. Autonomous systems also reduce the complexity of the overall spacecraft design since many functions can be placed in multifunctional multichip modules. This implies an increase of the complexity at the spacecraft subsystem level. NanoSpace-1 will test several new autonomous, distributed, and miniaturized multifunctional systems, including large memories modules, house keeping modules, RF- MEMS, and power conditioning modules. The MMS concept comprises several features, for instance, all 3D-multi chip modules are part of the spacecraft structure itself. The use of 3D-MCM modules as a large part of the spacecraft hull is a direct application of MMS thinking; the modules are load taking structure elements, and also contain many subsystems of the spacecraft. The MMS thinking is illustrated by the RF-MEMS 3D-MCM module. All other modules will be further presented in the paper. The RF-MEMS module comprises micro strips, patch-antennas, solid state power amplifiers, thermal control, micromechanical switches, power conditioning, radiation shields, and command interfaces. The size of the RF-module is 68x68x5 mm and has a weight of less than 70g. The module is designed to handle different frequencies, only by changing the top wafers and the mixer chip. MST and MMS integrated modules pose at least two major challenges compared to conventional technology. First, the processes cannot be changed half way to the product. Any substantial change in the process will almost certainly require a complete redesign of the whole system. Secondly, qualification and product assurance becomes more important since the processes in MMS tend to be long and complicated. The Ångström Space Technology Centre (ÅSTC) is a center for development of Micro Systems Technologies (MST) for Space Applications at the department of Materials Science at Uppsala University in Sweden. The center is now taking the next step in the ongoing Nanosatellite program, called the NanoSpace program. Backed by funding from the Swedish National Space Board (SNSB), the European Space Agency (ESA), and the European Commission (EC), the ÅSTC will begin developing nanosatellites to demonstrate the next generation spacecraft. The Nanosatellite program is built around a launch every 2nd year to test, verify and qualify new MST technologies for space. The Nanosatellite effort is a solid and well founded program with a backbone of technology research and Multifunctional Microsystems (MMS) thinking.
Bruhn F.
Köhler Jürgen
Stenmark Lars
No associations
LandOfFree
NANOSPACE-1: the Impacts of the First Swedish Nanosatellite on Spacecraft Architecture and Design does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with NANOSPACE-1: the Impacts of the First Swedish Nanosatellite on Spacecraft Architecture and Design, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and NANOSPACE-1: the Impacts of the First Swedish Nanosatellite on Spacecraft Architecture and Design will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1333299