Physics – Condensed Matter – Materials Science
Scientific paper
2004-10-13
Physics
Condensed Matter
Materials Science
10 pages, 8 figures
Scientific paper
10.1103/PhysRevB.71.035316
We report on a multiband microscopic theory of many-exciton complexes in self-assembled quantum dots. The single particle states are obtained by three methods: single-band effective-mass approximation, the multiband $k\cdot p$ method, and the tight-binding method. The electronic structure calculations are coupled with strain calculations via Bir-Pikus Hamiltonian. The many-body wave functions of $N$ electrons and $N$ valence holes are expanded in the basis of Slater determinants. The Coulomb matrix elements are evaluated using statically screened interaction for the three different sets of single particle states and the correlated $N$-exciton states are obtained by the configuration interaction method. The theory is applied to the excitonic recombination spectrum in InAs/GaAs self-assembled quantum dots. The results of the single-band effective-mass approximation are successfully compared with those obtained by using the of $k\cdot p$ and tight-binding methods.
Cheng Shun-Jen
Hawrylak Pawel
Sheng Weidong
No associations
LandOfFree
Multiband theory of multi-exciton complexes in self-assembled quantum dots does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Multiband theory of multi-exciton complexes in self-assembled quantum dots, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multiband theory of multi-exciton complexes in self-assembled quantum dots will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-136017