Physics – Condensed Matter – Soft Condensed Matter
Scientific paper
2009-08-26
Phys. Rev. E 81, 011606 (2010)
Physics
Condensed Matter
Soft Condensed Matter
32 pages, 14 figures
Scientific paper
10.1103/PhysRevE.81.011606
Molecular dynamics (MD) and continuum simulations are carried out to investigate the influence of shear rate and surface roughness on slip flow of a Newtonian fluid. For weak wall-fluid interaction energy, the nonlinear shear-rate dependence of the intrinsic slip length in the flow over an atomically flat surface is computed by MD simulations. We describe laminar flow away from a curved boundary by means of the effective slip length defined with respect to the mean height of the surface roughness. Both the magnitude of the effective slip length and the slope of its rate-dependence are significantly reduced in the presence of periodic surface roughness. We then numerically solve the Navier-Stokes equation for the flow over the rough surface using the rate-dependent intrinsic slip length as a local boundary condition. Continuum simulations reproduce the behavior of the effective slip length obtained from MD simulations at low shear rates. The slight discrepancy between MD and continuum results at high shear rates is explained by examination of the local velocity profiles and the pressure distribution along the wavy surface. We found that in the region where the curved boundary faces the mainstream flow, the local slip is suppressed due to the increase in pressure. The results of the comparative analysis can potentially lead to the development of an efficient algorithm for modeling rate-dependent slip flows over rough surfaces.
Niavarani Anoosheh
Priezjev Nikolai V.
No associations
LandOfFree
Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-625737