Micromechanics simulations of glass-estane mock polymer bonded explosives

Physics – Condensed Matter – Materials Science

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

2

Scientific paper

Polymer bonded explosives (PBXs) are particulate composites containing explosive particles and a continuous binder. The elastic modulus of the particles, at room temperature and higher, is often three to four orders of magnitude higher than that of the binder. Additionally, the explosive particles occupy high volume fractions, often greater than 90%. Both experimental and numerical determination of macroscopic properties of these composites is difficult. High modulus contrast mock PBXs provide a means of relatively inexpensive experimentation and validation of numerical approaches to determine properties of these materials. The goal of this investigation is to determine whether the effective elastic properties of monodisperse glass-estane mock PBXs can be predicted from two-dimensional micromechanics simulations using the finite element (FEM) method. In this study, the effect of representative volume element (RVE) size on the prediction of two-dimensional properties is explored. Two-dimensional estimates of elastic properties are compared with predictions from three-dimensional computations and with experimental data on glass-estane composites containing three different volume fractions of spherical glass beads. The effect of particle debonding on the effective elastic properties is also investigated using contact analyses. Results show that two-dimensional unit cells containing 10-20 circular particles are adequate for modelling glass-estane composites containing less than 60% glass particles by volume. No significant difference is observed between properties predicted by the two- and three-dimensional models. FEM simulations of RVEs, containing particles that are perfectly bonded to the binder, produce estimates of Young's modulus that are higher than the experimental data. Incorporation of debonding between particles and the binder causes the effective Young's modulus to decrease. However, the results suggest that cracks in the composite may play a significant role in determining the effective properties of mock polymer bonder explosives composed of glass and estane. The FEM simulations indicate that two-dimensional models that incorporate debonds and cracks can be used to obtain accurate estimates of the effective properties of glass-estane composites and possibly of PBXs.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Micromechanics simulations of glass-estane mock polymer bonded explosives does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Micromechanics simulations of glass-estane mock polymer bonded explosives, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Micromechanics simulations of glass-estane mock polymer bonded explosives will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1884812

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.