Metal-insulator transition and the Pr$^{3+}$/Pr$^{4+}$ valence shift in (Pr$_{1-y}$Y$_{y}$)$_{0.7}$Ca$_{0.3}$CoO$_3$

Physics – Condensed Matter – Strongly Correlated Electrons

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

10 figures

Scientific paper

The magnetic, electric and thermal properties of the ($Ln_{1-y}$Y$_{y}$)$_{0.7}$Ca$_{0.3}$CoO$_3$ perovskites ($Ln$~=~Pr, Nd) were investigated down to very low temperatures. The main attention was given to a peculiar metal-insulator transition, which is observed in the praseodymium based samples with $y=0.075$ and 0.15 at $T_{M-I}=64$ and 132~K, respectively. The study suggests that the transition, reported originally in Pr$_{0.5}$Ca$_{0.5}$CoO$_3$, is not due to a mere change of cobalt ions from the intermediate- to the low-spin states, but is associated also with a significant electron transfer between Pr$^{3+}$ and Co$^{3+}$/Co$^{4+}$ sites, so that the praseodymium ions occur below $T_{M-I}$ in a mixed Pr$^{3+}$/Pr$^{4+}$ valence. The presence of Pr$^{4+}$ ions in the insulating phase of the yttrium doped samples (Pr$_{1-y}$Y$_{y}$)$_{0.7}$Ca$_{0.3}$CoO$_3$ is evidenced by Schottky peak originating in Zeeman splitting of the ground state Kramers doublet. The peak is absent in pure Pr$_{0.7}$Ca$_{0.3}$CoO$_3$ in which metallic phase, based solely on non-Kramers Pr$^{3+}$ ions, is retained down to the lowest temperature.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Metal-insulator transition and the Pr$^{3+}$/Pr$^{4+}$ valence shift in (Pr$_{1-y}$Y$_{y}$)$_{0.7}$Ca$_{0.3}$CoO$_3$ does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Metal-insulator transition and the Pr$^{3+}$/Pr$^{4+}$ valence shift in (Pr$_{1-y}$Y$_{y}$)$_{0.7}$Ca$_{0.3}$CoO$_3$, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Metal-insulator transition and the Pr$^{3+}$/Pr$^{4+}$ valence shift in (Pr$_{1-y}$Y$_{y}$)$_{0.7}$Ca$_{0.3}$CoO$_3$ will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-694410

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.