Physics – Condensed Matter – Materials Science
Scientific paper
2009-01-29
Physics
Condensed Matter
Materials Science
Submitted to International Journal of Solids and Structures, January 29, 2009
Scientific paper
A meso-scale analysis is performed to determine the fracture process zone of concrete subjected to uniaxial tension. The meso-structure of concrete is idealised as stiff aggregates embedded in a soft matrix and separated by weak interfaces. The mechanical response of the matrix, the inclusions and the interface between the matrix and the inclusions is modelled by a discrete lattice approach. The inelastic response of the lattice elements is described by a damage approach, which corresponds to a continuous reduction of the stiffness of the springs. The fracture process in uniaxial tension is approximated by an analysis of a two-dimensional cell with periodic boundary conditions. The spatial distribution of dissipated energy density at the meso-scale of concrete is determined. The size and shape of the deterministic FPZ is obtained as the average of random meso-scale analyses. Additionally, periodicity of the discretisation is prescribed to avoid influences of the boundaries of the periodic cell on fracture patterns. The results of these analyses are then used to calibrate an integral-type nonlocal model.
Grassl Peter
Jirasek Milan
No associations
LandOfFree
Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-13411