Physics – Condensed Matter – Statistical Mechanics
Scientific paper
2004-11-25
Physics
Condensed Matter
Statistical Mechanics
5 figures. Additional demonstrations on radial distribution functions and equation of states are added
Scientific paper
We develop the method of Maximum Entropy (ME) as a technique to generate approximations to probability distributions. The central results consist in (a) justifying the use of relative entropy as the uniquely natural criterion to select a "best" approximation from within a family of trial distributions, and (b) to quantify the extent to which non-optimal trial distributions are ruled out. The Bogoliuvob variational method is shown to be included as a special case. As an illustration we apply our method to simple fluids. In a first use of the ME method the "exact" canonical distribution is approximated by that of a fluid of hard spheres and ME is used to select the optimal value of the hard-sphere diameter. A second, more refined application of the ME method approximates the "exact" distribution by a suitably weighed average over different hard-sphere diameters and leads to a considerable improvement in accounting for the soft-core nature of the interatomic potential. As a specific example, the radial distribution function and the equation of state for a Lennard-Jones fluid (Argon) are compared with results from molecular dynamics simulations.
Caticha Ariel
Tseng Chih-Yuan
No associations
LandOfFree
Maximum Entropy and the Variational Method in Statistical Mechanics: an Application to Simple Fluids does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Maximum Entropy and the Variational Method in Statistical Mechanics: an Application to Simple Fluids, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Maximum Entropy and the Variational Method in Statistical Mechanics: an Application to Simple Fluids will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-414710