Magneto-optical investigation of the field-induced spin-glass insulator to ferromagnetic metallic transition of the bilayer manganite (La$_{0.4}$Pr$_{0.6}$)$_{1.2}$Sr$_{1.8}$Mn$_2$O$_7$

Physics – Condensed Matter – Strongly Correlated Electrons

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

9 pages, 8 figures

Scientific paper

10.1103/PhysRevB.74.045113

We measured the magneto-optical response of (La$_{0.4}$Pr$_{0.6}$)$_{1.2}$Sr$_{1.8}$Mn$_2$O$_7$ in order to investigate the microscopic aspects of the magnetic field driven spin-glass insulator to ferromagnetic metal transition. Application of a magnetic field recovers the ferromagnetic state with an overall redshift of the electronic structure, growth of the bound carrier localization associated with ferromagnetic domains, development of a pseudogap, and softening of the Mn-O stretching and bending modes that indicate a structural change. We discuss field- and temperature-induced trends within the framework of the Tomioka-Tokura global electronic phase diagram picture and suggest that controlled disorder near a phase boundary can be used to tune the magnetodielectric response. Remnants of the spin-glass insulator to ferromagnetic metallic transition can also drive 300 K color changes in (La$_{0.4}$Pr$_{0.6}$)$_{1.2}$Sr$_{1.8}$Mn$_2$O$_7$.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Magneto-optical investigation of the field-induced spin-glass insulator to ferromagnetic metallic transition of the bilayer manganite (La$_{0.4}$Pr$_{0.6}$)$_{1.2}$Sr$_{1.8}$Mn$_2$O$_7$ does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Magneto-optical investigation of the field-induced spin-glass insulator to ferromagnetic metallic transition of the bilayer manganite (La$_{0.4}$Pr$_{0.6}$)$_{1.2}$Sr$_{1.8}$Mn$_2$O$_7$, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magneto-optical investigation of the field-induced spin-glass insulator to ferromagnetic metallic transition of the bilayer manganite (La$_{0.4}$Pr$_{0.6}$)$_{1.2}$Sr$_{1.8}$Mn$_2$O$_7$ will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-196535

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.