Physics – Condensed Matter – Materials Science
Scientific paper
2010-05-24
Physics
Condensed Matter
Materials Science
5 figures
Scientific paper
We have investigated the magnetoelectric and magnetodielectric response in FeVO$_4$, which exhibits a change in magnetic structure coincident with ferroelectric ordering at $T_{N2}$$\approx$15 K. Using symmetry considerations, we construct a model for the possible magnetoelectric coupling in this system, and present a discussion of the allowed spin structures in FeVO$_4$. Based on this model, in which the spontaneous polarization is caused by a trilinear spin-phonon interaction, we experimentally explore the magnetoelectric coupling in FeVO$_4$ thin films through measurements of the electric field induced shift of the multiferroic phase transition temperature, which exhibits an increase of 0.25 K in an applied field of 4 MV/m. The strong spin-charge coupling in \fvo\, is also reflected in the significant magnetodielectric shift, which is present in the paramagnetic phase due to a quartic spin-phonon interaction and shows a marked enhancement with the onset of magnetic order which we attribute to the trilinear spin-phonon interaction. We observe a clear magnetic field induced dielectric anomaly at lower temperatures, distinct from the sharp peak associated with the multiferroic transition, which we tentatively assign to a spin reorientation cross-over. We also present a magnetoelectric phase diagram for FeVO$_4$.
Dixit Ambesh
Harris Brooks A.
Lawes Gavin
No associations
LandOfFree
Magnetic structure and magnetoelectric coupling in bulk and thin film FeVO$_4$ does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Magnetic structure and magnetoelectric coupling in bulk and thin film FeVO$_4$, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic structure and magnetoelectric coupling in bulk and thin film FeVO$_4$ will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-119293