Physics – Condensed Matter – Materials Science
Scientific paper
2010-02-02
Phys. Rev. B 81, 155203 (2010)
Physics
Condensed Matter
Materials Science
13 pages, 9 figures
Scientific paper
10.1103/PhysRevB.81.155203
The temperature dependence of magnetic anisotropy in (113)A (Ga,Mn)As layers grown by molecular beam epitaxy is studied by means of superconducting quantum interference device (SQUID) magnetometry as well as by ferromagnetic resonance (FMR) and magnetooptical effects. Experimental results are described considering cubic and two kinds of uniaxial magnetic anisotropy. The magnitude of cubic and uniaxial anisotropy constants is found to be proportional to the fourth and second power of saturation magnetization, respectively. Similarly to the case of (001) samples, the spin reorientation transition from uniaxial anisotropy with the easy along the [-1, 1, 0] direction at high temperatures to the biaxial <100> anisotropy at low temperatures is observed around 25 K. The determined values of the anisotropy constants have been confirmed by FMR studies. As evidenced by investigations of the polar magnetooptical Kerr effect, the particular combination of magnetic anisotropies allows the out-of-plane component of magnetization to be reversed by an in-plane magnetic field. Theoretical calculations within the p-d Zener model explain the magnitude of the out-of-plane uniaxial anisotropy constant caused by epitaxial strain, but do not explain satisfactorily the cubic anisotropy constant. At the same time the findings point to the presence of an additional uniaxial anisotropy of unknown origin. Similarly to the case of (001) films, this additional anisotropy can be explained by assuming the existence of a shear strain. However, in contrast to the (001) samples, this additional strain has an out-of-the-(001)-plane character.
Aleshkevych Pavlo
Dietl Tomasz
Döppe Matthias
Sawicki Maciej
Sliwa Cezary
No associations
LandOfFree
Magnetic anisotropy of epitaxial (Ga,Mn)As on (113)A GaAs does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Magnetic anisotropy of epitaxial (Ga,Mn)As on (113)A GaAs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic anisotropy of epitaxial (Ga,Mn)As on (113)A GaAs will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-707038