Physics – Condensed Matter – Soft Condensed Matter
Scientific paper
2010-08-24
Phys. Rev. B 77, 094202 (2008)
Physics
Condensed Matter
Soft Condensed Matter
16 pages, 4 figures, 36 references
Scientific paper
X-band electron paramagnetic resonance (EPR) spectroscopy was used to study the spectral properties of a nitroxide spin probe in ethanol glass and crystalline ethanol, at 5 - 11.5 K. The different anisotropy of molecular packing in the two host matrices was evidenced by different rigid limit values for maximal hyperfine splitting in the signal of the spin probe. The significantly shorter phase memory time, , for the spin probe dissolved in crystalline ethanol, as compared to ethanol glass, was discussed in terms of contribution from spectral diffusion. The effect of low-frequency dynamics was manifested in the temperature dependence of and in the difference between the data measured at different spectral positions. This phenomenon was addressed within the framework of the slow-motional isotropic diffusion model [S. Lee, and S. Z. Tang, Phys. Rev. B 31, 1308 (1985)] predicting the spin probe dynamics within the millisecond range, at very low temperatures. The shorter spin-lattice relaxation time of the spin probe in ethanol glass was interpreted in terms of enhanced energy exchange between the spin system and the lattice in the glass matrix due to boson peak excitations.
Jokić Milan
Kveder Marina
Merunka Dalibor
Rakvin Boris
No associations
LandOfFree
Low temperature electron-spin relaxation in the crystalline and glassy states of solid ethanol does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Low temperature electron-spin relaxation in the crystalline and glassy states of solid ethanol, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low temperature electron-spin relaxation in the crystalline and glassy states of solid ethanol will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-393845