Physics – Condensed Matter – Materials Science
Scientific paper
2008-08-10
Physics
Condensed Matter
Materials Science
17 pages, 7 figures
Scientific paper
10.1063/1.3075820
The resonance modes and the related effects to the transmission of elastic waves in a two dimensional phononic crystal formed by periodic arrangements of a two blocks unit cell in one direction are studied. The unit cell consists of two asymmetric elliptic cylinders coated with silicon rubber and embedded in a rigid matrix. The modes are obtained by the semi-analytic method in the least square collocation scheme and confirmed by the finite element method simulations. Two resonance modes, corresponding to the vibration of the cylinder along the long and short axes, give rise to resonance reflections of elastic waves. One mode in between the two modes, related to the opposite vibration of the two cylinders in the unit cell in the direction along the layer, results in the total transmission of elastic waves due to zero effective mass density at the frequency. The resonance frequency of this new mode changes continuously with the orientation angle of the elliptic resonator.
Gu Yongwei
Luo Xudong
Ma Hongru
No associations
LandOfFree
Low frequency elastic wave propagation in 2D locally resonant phononic crystal with asymmetric resonator does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Low frequency elastic wave propagation in 2D locally resonant phononic crystal with asymmetric resonator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low frequency elastic wave propagation in 2D locally resonant phononic crystal with asymmetric resonator will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-370540