Longitudinal and seasonal variations in plasmaspheric electron density: Implications for electron precipitation

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

10

Ionosphere: Ionosphere/Magnetosphere Interactions (2736), Ionosphere: Wave/Particle Interactions (7867), Magnetospheric Physics: Magnetosphere: Inner, Magnetospheric Physics: Magnetospheric Configuration And Dynamics, Magnetospheric Physics: Plasmasphere

Scientific paper

The tilt and offset of the Earth's magnetic field can significantly affect the longitudinal and seasonal distribution of electron density in the plasmasphere. Here we show that for the solar maximum conditions of 1990-1991, the largest annual variation determined from CRRES measurements of plasmaspheric equatorial electron density in the range L = 2.5-5.0 occurs at American longitudes (-60°E), while no annual variation occurs at Asian longitudes (+100°E). Plasmaspheric electron density is larger in December than in June at most longitudes, from -180°E eastward to +20°E. At all other longitudes the density ratio from December to June is very close to 1.0. The largest December/June density ratio is at L = 3.0 at American longitudes (-60°E). At L = 4.5 and above, the annual variation disappears. The lowest electron density values for a given L-shell occur at American longitudes, in June. Ion densities also show significant annual variations, with similar longitudinal and seasonal characteristics in the case of IMAGE EUV He+ measurements. Atomic mass density measurements calculated using the magnetometer cross-phase technique show significant seasonal variations but also imply composition changes with longitude. Using the quasilinear PADIE code we calculate the bounce-averaged diffusion rate of electrons by plasmaspheric hiss with a fixed wave intensity. December to June variations in plasmaspheric density, particularly at American longitudes, drive changes in the wave-particle interactions, increasing diffusion into the loss cone by a factor of ~3 at 1 MeV at L = 3.0, thus hardening the electron precipitation spectrum during the southern hemisphere winter (in June).

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Longitudinal and seasonal variations in plasmaspheric electron density: Implications for electron precipitation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Longitudinal and seasonal variations in plasmaspheric electron density: Implications for electron precipitation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Longitudinal and seasonal variations in plasmaspheric electron density: Implications for electron precipitation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-742386

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.