Physics – Condensed Matter – Disordered Systems and Neural Networks
Scientific paper
1998-09-07
Proceedings of the 6th International Conference on Quasicrystals, Eds. S. Takeuchi and T. Fujiwara (World Scientific, Singapor
Physics
Condensed Matter
Disordered Systems and Neural Networks
4 pages, 4 PostScript figures, uses sprocl.sty (included)
Scientific paper
10.1088/0953-8984/10/4/008
We study electronic eigenstates on quasiperiodic lattices using a tight-binding Hamiltonian in the vertex model. In particular, the two-dimensional Penrose tiling and the three-dimensional icosahedral Ammann-Kramer tiling are considered. Our main interest concerns the decay form and the self-similarity of the electronic wave functions, which we compute numerically for periodic approximants of the perfect quasiperiodic structure. In order to investigate the suggested power-law localization of states, we calculate their participation numbers and structural entropy. We also perform a multifractal analysis of the eigenstates by standard box-counting methods. Our results indicate a rather different behaviour of the two- and the three-dimensional systems. Whereas the eigenstates on the Penrose tiling typically show power-law localization, this was not observed for the icosahedral tiling.
Grimm Uwe
Rieth Thomas
Schreiber Michael
No associations
LandOfFree
Localization of Electronic Wave Functions on Quasiperiodic Lattices does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Localization of Electronic Wave Functions on Quasiperiodic Lattices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Localization of Electronic Wave Functions on Quasiperiodic Lattices will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-657463