Local structures of polar wurtzites Zn_{1-x}Mg_{x}O studied by Raman and {67}Zn/{25}Mg NMR spectroscopies and by total neutron scattering

Physics – Condensed Matter – Materials Science

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

12 pages, 14 figures, 2 tables

Scientific paper

10.1103/PhysRevB.78.195205

Local compositions and structures of Zn_{1-x}Mg_{x}O alloys have been investigated by Raman and solid-state {67}Zn/{25}Mg nuclear magnetic resonance (NMR) spectroscopies, and by neutron pair-distribution-function (PDF) analyses. The E2(low) and E2(high) Raman modes of Zn_{1-x}Mg_{x}O display Gaussian- and Lorentzian-type profiles, respectively. At higher Mg substitutions, both modes become broader, while their peak positions shift in opposite directions. The evolution of Raman spectra from Zn_{1-x}Mg_{x}O solid solutions are discussed in terms of lattice deformation associated with the distinct coordination preferences of Zn and Mg. Solid-state magic-angle-spinning (MAS) NMR studies suggest that the local electronic environments of {67}Zn in ZnO are only weakly modified by the 15% substitution of Mg for Zn. {25}Mg MAS spectra of Zn_{0.85}Mg_{0.15}O show an unusual upfield shift, demonstrating the prominent shielding ability of Zn in the nearby oxidic coordination sphere. Neutron PDF analyses of Zn_{0.875}Mg_{0.125}O using a 2x2x1 supercell corresponding to Zn_{7}MgO_{8} suggest that the mean local geometry of MgO_{4} fragments concurs with previous density functional theory (DFT)-based structural relaxations of hexagonal wurtzite MgO. MgO_{4} tetrahedra are markedly compressed along their c-axes and are smaller in volume than ZnO_{4} units by ~6%. Mg atoms in Zn_{1-x}Mg_{x}O have a shorter bond to the $c$-axial oxygen atom than to the three lateral oxygen atoms, which is distinct from the coordination of Zn. The precise structure, both local and average, of Zn_{0.875}Mg_{0.125}O obtained from time-of-flight total neutron scattering supports the view that Mg-substitution in ZnO results in increased total spontaneous polarization.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Local structures of polar wurtzites Zn_{1-x}Mg_{x}O studied by Raman and {67}Zn/{25}Mg NMR spectroscopies and by total neutron scattering does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Local structures of polar wurtzites Zn_{1-x}Mg_{x}O studied by Raman and {67}Zn/{25}Mg NMR spectroscopies and by total neutron scattering, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Local structures of polar wurtzites Zn_{1-x}Mg_{x}O studied by Raman and {67}Zn/{25}Mg NMR spectroscopies and by total neutron scattering will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-548739

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.