Physics – Condensed Matter – Statistical Mechanics
Scientific paper
2011-12-12
Phys. Rev. E 84, 011141 (2011)
Physics
Condensed Matter
Statistical Mechanics
12 pages, 4 figures
Scientific paper
10.1103/PhysRevE.84.011141
The large-deviation method allows to characterize an ergodic counting process in terms of a thermodynamic frame where a free energy function determines the asymptotic non-stationary statistical properties of its fluctuations. Here, we study this formalism through a statistical mechanics approach, i.e., with an auxiliary counting process that maximizes an entropy function associated to the thermodynamic potential. We show that the realizations of this auxiliary process can be obtained after applying a conditional measurement scheme to the original ones, providing is this way an alternative measurement interpretation of the thermodynamic approach. General results are obtained for renewal counting processes, i.e., those where the time intervals between consecutive events are independent and defined by a unique waiting time distribution. The underlying statistical mechanics is controlled by the same waiting time distribution, rescaled by an exponential decay measured by the free energy function. A scale invariance, shift closure, and intermittence phenomena are obtained and interpreted in this context. Similar conclusions apply for non-renewal processes when the memory between successive events is induced by a stochastic waiting time distribution.
No associations
LandOfFree
Large deviations of ergodic counting processes: a statistical mechanics approach does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Large deviations of ergodic counting processes: a statistical mechanics approach, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Large deviations of ergodic counting processes: a statistical mechanics approach will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-709376