Ising model on hyperbolic lattice studied by corner transfer matrix renormalization group method

Physics – Condensed Matter – Statistical Mechanics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

9 pages, 12 figures

Scientific paper

10.1088/1751-8113/41/12/125001

We study two-dimensional ferromagnetic Ising model on a series of regular lattices, which are represented as the tessellation of polygons with p>=5 sides, such as pentagons (p=5), hexagons (p=6), etc. Such lattices are on hyperbolic planes, which have constant negative scalar curvatures. We calculate critical temperatures and scaling exponents by use of the corner transfer matrix renormalization group method. As a result, the mean-field like phase transition is observed for all the cases p>=5. Convergence of the calculated transition temperatures with respect to p is investigated towards the limit p->infinity, where the system coincides with the Ising model on the Bethe lattice.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Ising model on hyperbolic lattice studied by corner transfer matrix renormalization group method does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Ising model on hyperbolic lattice studied by corner transfer matrix renormalization group method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ising model on hyperbolic lattice studied by corner transfer matrix renormalization group method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-681464

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.