Physics – Condensed Matter – Materials Science
Scientific paper
2010-09-10
Physics
Condensed Matter
Materials Science
6 pages, 5 figures
Scientific paper
We use a density-functional-theory (DFT) approach with a modified Becke-Johnson exchange plus local density approximation (LDA) correlation potential (mBJLDA) [semi-local, orbital-independent, producing accurate semiconductor gaps. see F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)] to investigate the electronic structures of zincblende transition-metal (TM) pnictides and chalcogenides akin to semiconductors. Our results show that this potential does not yield visible changes in wide TM d-t_{2g} bands near the Fermi level, but makes the occupied minority-spin p-bands lower by 0.25~0.35 eV and the empty (or nearly empty) minority-spin e_g bands across the Fermi level higher by 0.33~0.73 eV. Consequently, mBJLDA, having no atom-dependent parameters, makes zincblende MnAs become a truly half-metallic (HM) ferromagnet with a HM gap (the key parameter) 0.318eV, being consistent with experiment. For zincblende MnSb, CrAs, CrSb, CrSe, or CrTe, the HM gap is enhanced by 19~56% compared to LDA and generalized gradient approximation results. The improved HM ferromagnetism can be understood in terms of the mBJLDA-enhanced spin exchange splitting.
Guo San-Dong
Liu Bang-Gui
No associations
LandOfFree
Improved half-metallic ferromagnetism of transition-metal pnictides and chalcogenides calculated with a modified Becke-Johnson exchange potential does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Improved half-metallic ferromagnetism of transition-metal pnictides and chalcogenides calculated with a modified Becke-Johnson exchange potential, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Improved half-metallic ferromagnetism of transition-metal pnictides and chalcogenides calculated with a modified Becke-Johnson exchange potential will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-671707