Physics – Condensed Matter – Superconductivity
Scientific paper
2005-05-19
Physics
Condensed Matter
Superconductivity
12, pages of text and Figs. TO APPEAR IN Mod. Phys. Lett. B (2005)_
Scientific paper
10.1142/S0217984905008785
Samples of series Bi1.6Pb0.4Sr2Ca2Cu3-xZnxO10 with x = 0.0, 0.015, 0.03, 0.06, 0.09 and 0.12 are synthesized by solid-state reaction route. All the samples crystallize in tetragonal structure with majority (> 90%) of Bi-2223 (Bi2Sr2Ca2Cu3O10) phase (c-lattice parameter ~ 36 A0). The proportion of Bi-2223 phase decreases slightly with an increase in x. The lattice parameters a and c of main phase (Bi-2223) do not change significantly with increasing x. Superconducting critical transition temperature (Tc) decreases with x as evidenced by both resistivity [(T)] and AC magnetic susceptibility [(T)] measurements. Interestingly the decrement of Tc is not monotonic and the same saturates at around 96 K for x > 0.06. In fact Tc decreases fast (~10K/at%) for x = 0.015 and 0.03 samples and later nearly saturates for higher x values. Present results of Zn doping in Bi-2223 system are compared with Zn doped other HTSC (High temperature superconducting) systems, namely the RE-123 (REBa2Cu3O7) and La-214 ((La,Sr)2CuO4).
Ansari M. A.
Awana* V. P. S.
Giri Rajiv
Gupta Anurag
Kishan Hari
No associations
LandOfFree
Impact of Zn substitution on phase formation and superconductivity of Bi1.6Pb0.4 Sr2Ca2Cu3-xZnxO10 with x = 0.0, 0.015, 0.03, 0.06, 0.09 and 0.12 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Impact of Zn substitution on phase formation and superconductivity of Bi1.6Pb0.4 Sr2Ca2Cu3-xZnxO10 with x = 0.0, 0.015, 0.03, 0.06, 0.09 and 0.12, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Impact of Zn substitution on phase formation and superconductivity of Bi1.6Pb0.4 Sr2Ca2Cu3-xZnxO10 with x = 0.0, 0.015, 0.03, 0.06, 0.09 and 0.12 will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-581643