Holstein model in infinite dimensions at half-filling

Physics – Condensed Matter – Strongly Correlated Electrons

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Revtex + 17 postscript figures included

Scientific paper

10.1103/PhysRevB.58.14320

The normal state of the Holstein model is studied at half-filling in infinite dimensions and in the adiabatic regime. The dynamical mean-field equations are solved using perturbation expansions around the extremal paths of the effective action for the atoms. We find that the Migdal-Eliashberg expansion breaks down in the metallic state if the electron-phonon coupling $\lambda$ exceeds a value of about 1.3 in spite of the fact that the formal expansion parameter $\lambda \omega_0/E_F$ ($\omega_0$ is the phonon frequency, $E_F$ the Fermi energy) is much smaller than 1. The breakdown is due to the appearance of more than one extremal path of the action. We present numerical results which illustrate in detail the evolution of the local Green's function, the self-energy and the effective atomic potential as a function of $\lambda$.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Holstein model in infinite dimensions at half-filling does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Holstein model in infinite dimensions at half-filling, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Holstein model in infinite dimensions at half-filling will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-346711

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.