Physics – Condensed Matter – Other Condensed Matter
Scientific paper
2008-07-18
Phys. Rev. Lett. 102, 030407 (2009)
Physics
Condensed Matter
Other Condensed Matter
4 pages, 5 figures, published version
Scientific paper
10.1103/PhysRevLett.102.030407
We study the dynamics of strongly correlated one-dimensional Bose gases in a combined harmonic and optical lattice potential subjected to sudden displacement of the confining potential. Using the time-evolving block decimation method, we perform a first-principles quantum many-body simulation of the experiment of Fertig {\it et al.} [Phys. Rev. Lett. {\bf 94}, 120403 (2005)] across different values of the lattice depth ranging from the superfluid to the Mott insulator regimes. We find good quantitative agreement with this experiment: the damping of the dipole oscillations is significant even for shallow lattices, and the motion becomes overdamped with increasing lattice depth as observed. We show that the transition to overdamping is attributed to the decay of superfluid flow accelerated by quantum fluctuations, which occurs well before the emergence of Mott insulator domains.
Clark Charles W.
Danshita Ippei
No associations
LandOfFree
Heavily Damped Motion of One-Dimensional Bose Gases in an Optical Lattice does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Heavily Damped Motion of One-Dimensional Bose Gases in an Optical Lattice, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heavily Damped Motion of One-Dimensional Bose Gases in an Optical Lattice will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-388105