Physics – Condensed Matter – Soft Condensed Matter
Scientific paper
2002-11-22
Physics
Condensed Matter
Soft Condensed Matter
8 pages, 4figures
Scientific paper
10.1103/PhysRevE.68.061108
One measure of geometrical complexity of a spatial curve is the number of crossings in a planar projection of the curve. For $N$-noded ring polymers with a fixed knot type, we evaluate numerically the average of the crossing number over some directions. We find that the average crossing number under the topological constraint are less than that of no topological constraint for large $N$. The decrease of the geometrical complexity is significant when the thickness of polymers is small. The simulation with or without a topological constraint also shows that the average crossing number and the average size of ring polymers are independent measures of conformational complexity.
Deguchi Tetsuo
Shimamura Miyuki K.
No associations
LandOfFree
Geometrical complexity of conformations of ring polymers under topological constraints does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Geometrical complexity of conformations of ring polymers under topological constraints, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Geometrical complexity of conformations of ring polymers under topological constraints will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-162041