Physics – Condensed Matter – Mesoscale and Nanoscale Physics
Scientific paper
2009-02-12
Phys. Rev. B 79, 214506 (2009)
Physics
Condensed Matter
Mesoscale and Nanoscale Physics
7 pages, 2 figures
Scientific paper
10.1103/PhysRevB.79.214506
We calculate the distribution of the scattering matrix at the Fermi level for chaotic normal-superconducting systems for the case of arbitrary coupling of the scattering region to the scattering channels. The derivation is based on the assumption of uniformly distributed scattering matrices at ideal coupling, which holds in the absence of a gap in the quasiparticle excitation spectrum. The resulting distribution generalizes the Poisson kernel to the nonstandard symmetry classes introduced by Altland and Zirnbauer. We show that unlike the Poisson kernel, our result cannot be obtained by combining the maximum entropy principle with the analyticity-ergodicity constraint. As a simple application, we calculate the distribution of the conductance for a single-channel chaotic Andreev quantum dot in a magnetic field.
No associations
LandOfFree
Generalization of the Poisson kernel to the superconducting random-matrix ensembles does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Generalization of the Poisson kernel to the superconducting random-matrix ensembles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Generalization of the Poisson kernel to the superconducting random-matrix ensembles will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-556837