Physics – Condensed Matter – Statistical Mechanics
Scientific paper
2008-03-27
Physics
Condensed Matter
Statistical Mechanics
23 pages, 8 figures, 1 table
Scientific paper
10.1063/1.2928843
The physical properties of a classical many-particle system with interactions given by a repulsive Gaussian pair potential are extended to arbitrarily high Euclidean dimensions. The goals of this paper are to characterize the behavior of the pair correlation function (pcf) in various density regimes and to understand the phase properties of the Gaussian core model (GCM) as parametrized by dimension d. To this end, we explore the fluid and crystalline solid phases. For the dilute regime of the fluid phase, a cluster expansion of the pcf in reciprocal temperature is presented, the coefficients of which may be evaluated analytically due to the nature of the Gaussian potential. We present preliminary results concerning the convergence properties of this expansion. The analytical cluster expansion is related to numerical approximations for the pcf in the dense fluid regime by utilizing hypernetted chain, Percus-Yevick, and mean-field closures to the Ornstein-Zernike equation. Based on the results of these comparisons, we provide evidence in support of a decorrelation principle for the GCM in high Euclidean dimensions. In the solid phase, we consider the behavior of the freezing temperature in the limit of zero density and show that it approaches zero itself in this limit for any d via a collective coordinate argument. Duality relations with respect to the energies of a lattice and its dual are then discussed, and these relations aid in the Maxwell double-tangent construction of phase coexistence regions between dual lattices based on lattice summation energies. The results from this analysis are used to draw conclusions about the ground-state structures of the GCM for a given dimension.
Stillinger Frank H.
Torquato Salvatore
Zachary Chase E.
No associations
LandOfFree
Gaussian core model phase diagram and pair correlations in high Euclidean dimensions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Gaussian core model phase diagram and pair correlations in high Euclidean dimensions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gaussian core model phase diagram and pair correlations in high Euclidean dimensions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-354370