Physics – Condensed Matter – Soft Condensed Matter
Scientific paper
2012-03-21
Physics
Condensed Matter
Soft Condensed Matter
Soft Matter, 2012
Scientific paper
10.1039/C2SM25121C
We address the crystallization of monodisperse hard spheres in terms of the properties of finite- size crystalline clusters. By means of large scale event-driven Molecular Dynamics simulations, we study systems at different packing fractions {\phi} ranging from weakly supersaturated state points to glassy ones, covering different nucleation regimes. We find that such regimes also result in different properties of the crystalline clusters: compact clusters are formed in the classical-nucleation-theory regime ({\phi} \leq 0.54), while a crossover to fractal, ramified clusters is encountered upon increasing packing fraction ({\phi} \geq 0.56), where nucleation is more spinodal-like. We draw an analogy between macroscopic crystallization of our clusters and percolation of attractive systems to provide ideas on how the packing fraction influences the final structure of the macroscopic crystals. In our previous work (Phys. Rev. Lett., 106, 215701, 2011), we have demonstrated how crystallization from a glass (at {\phi} > 0.58) happens via a gradual (many-step) mechanism: in this paper we show how the mechanism of gradual growth seems to hold also in super-saturated systems just above freezing showing that static properties of clusters are not much affected by dynamics.
Cates Michael E.
Poon Wilson C. K.
Pusey Peter N.
Sanz Eduardo
Valeriani Chantal
No associations
LandOfFree
From compact to fractal crystalline clusters in concentrated systems of monodisperse hard spheres does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with From compact to fractal crystalline clusters in concentrated systems of monodisperse hard spheres, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and From compact to fractal crystalline clusters in concentrated systems of monodisperse hard spheres will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-488768