Forced translocation of a polymer: dynamical scaling vs. MD-simulation

Physics – Condensed Matter – Soft Condensed Matter

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

17 pages, 8 figures; figure 5 is new; figures 4 and 6-8 are upgraded

Scientific paper

10.1103/PhysRevE.85.041801

We suggest a theoretical description of the force-induced translocation dynamics of a polymer chain through a nanopore. Our consideration is based on the tensile (Pincus) blob picture of a pulled chain and the notion of propagating front of tensile force along the chain backbone, suggested recently by T. Sakaue. The driving force is associated with a chemical potential gradient that acts on each chain segment inside the pore. Depending on its strength, different regimes of polymer motion (named after the typical chain conformation, "trumpet", "stem-trumpet", etc.) occur. Assuming that the local driving and drag forces are equal (i.e., in a quasi-static approximation), we derive an equation of motion for the tensile front position $X(t)$. We show that the scaling law for the average translocation time $<\tau>$ changes from $<\tau> \sim N^{2\nu}/f^{1/\nu}$ to $<\tau> \sim N^{1+\nu}/f$ (for the free-draining case) as the dimensionless force ${\widetilde f}_{R} = a N^{\nu}f /T$ (where $a$, $N$, $\nu$, $f$, $T$ are the Kuhn segment length, the chain length, the Flory exponent, the driving force, and the temperature, respectively) increases. These and other predictions are tested by Molecular Dynamics (MD) simulation. Data from our computer experiment indicates indeed that the translocation scaling exponent $\alpha$ grows with the pulling force ${\widetilde f}_{R}$) albeit the observed exponent $\alpha$ stays systematically smaller than the theoretically predicted value. This might be associated with fluctuations which are neglected in the quasi-static approximation.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Forced translocation of a polymer: dynamical scaling vs. MD-simulation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Forced translocation of a polymer: dynamical scaling vs. MD-simulation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Forced translocation of a polymer: dynamical scaling vs. MD-simulation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-717051

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.