First order $0/π$ quantum phase transition in the Kondo regime of a superconducting carbon nanotube quantum dot

Physics – Condensed Matter – Mesoscale and Nanoscale Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

10 pages, 6 figures in main text, 4 figures in appendix

Scientific paper

10.1103/PhysRevX.2.021001

We study a carbon nanotube quantum dot embedded into a SQUID loop in order to investigate the competition of strong electron correlations with proximity effect. Depending whether local pairing or local magnetism prevails, a superconducting quantum dot will respectively exhibit positive or negative supercurrent, referred to as a 0 or $\pi$ Josephson junction. In the regime of strong Coulomb blockade, the 0 to $\pi$ transition is typically controlled by a change in the discrete charge state of the dot, from even to odd. In contrast, at larger tunneling amplitude the Kondo effect develops for an odd charge (magnetic) dot in the normal state, and quenches magnetism. In this situation, we find that a first order 0 to $\pi$ quantum phase transition can be triggered at fixed valence when superconductivity is brought in, due to the competition of the superconducting gap and the Kondo temperature. The SQUID geometry together with the tunability of our device allows the exploration of the associated phase diagram predicted by recent theories. We also report on the observation of anharmonic behavior of the current-phase relation in the transition regime, that we associate with the two different accessible superconducting states. Our results ultimately reveal the spin singlet nature of the Kondo ground state, which is the key process in allowing the stability of the 0-phase far from the mixed valence regime.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

First order $0/π$ quantum phase transition in the Kondo regime of a superconducting carbon nanotube quantum dot does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with First order $0/π$ quantum phase transition in the Kondo regime of a superconducting carbon nanotube quantum dot, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and First order $0/π$ quantum phase transition in the Kondo regime of a superconducting carbon nanotube quantum dot will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-147408

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.