Physics – Condensed Matter – Statistical Mechanics
Scientific paper
1997-11-17
Phys.Rev.E58(1998)128-132
Physics
Condensed Matter
Statistical Mechanics
5 pages, 3 figures, uses epsf.sty. Estimates for the site entropy and the gamma exponent indicated explicitly
Scientific paper
10.1103/PhysRevE.58.128
A Hamiltonian cycle of a graph is a closed path that visits each site once and only once. I study a field theoretic representation for the number of Hamiltonian cycles for arbitrary graphs. By integrating out quadratic fluctuations around the saddle point, one obtains an estimate for the number which reflects characteristics of graphs well. The accuracy of the estimate is verified by applying it to 2d square lattices with various boundary conditions. This is the first example of extracting meaningful information from the quadratic approximation to the field theory representation.
No associations
LandOfFree
Field theoretic approach to the counting problem of Hamiltonian cycles of graphs does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Field theoretic approach to the counting problem of Hamiltonian cycles of graphs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Field theoretic approach to the counting problem of Hamiltonian cycles of graphs will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-500796