Ferromagnetism in defect-ridden oxides and related materials

Physics – Condensed Matter – Materials Science

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

22 pages, 6 figures

Scientific paper

The existence of high-temperature ferromagnetism in thin films and nanoparticles of oxides containing small quantities of magnetic dopants remains controversial. Some regard these materials as dilute magnetic semiconductors, while others think they are ferromagnetic only because the magnetic dopants form secondary ferromagnetic impurity phases such as cobalt metal or magnetite. There are also reports in d0 systems and other defective oxides that contain no magnetic ions. Here, we investigate TiO2 (rutile) containing 1 - 5% of iron cations and find that the room-temperature ferromagnetism of films prepared by pulsed-laser deposition is not due to magnetic ordering of the iron. The films are neither dilute magnetic semiconductors nor hosts to an iron-based ferromagnetic impurity phase. A new model is developed for defect-related ferromagnetism which involves a spin-split defect band populated by charge transfer from a proximate charge reservoir in the present case a mixture Fe2+ and Fe3+ ions in the oxide lattice. The phase diagram for the model shows how inhomogeneous Stoner ferromagnetism depends on the total number of electrons Ntot, the Stoner exchange integral I and the defect bandwidth W; the band occupancy is governed by the d-d Coulomb interaction U. There are regions of ferromagnetic metal, half-metal and insulator as well as nonmagnetic metal and insulator. A characteristic feature of the high-temperature Stoner magnetism is an an anhysteretic magnetization curve which is practically temperature independent below room temperature. This is related to a wandering ferromagnetic axis which is determined by local dipole fields. The magnetization is limited by the defect concentration, not by the 3d doping. Only 1-2 % of the volume of the films is magnetically ordered.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Ferromagnetism in defect-ridden oxides and related materials does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Ferromagnetism in defect-ridden oxides and related materials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ferromagnetism in defect-ridden oxides and related materials will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-499942

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.