Physics – Condensed Matter – Materials Science
Scientific paper
2010-03-13
Journal Of Applied Physics 107, 013911 (2010)
Physics
Condensed Matter
Materials Science
29 pages, 8 figures, 4 tables
Scientific paper
10.1063/1.3277055
We report the effect of La-substitution on the magnetic and magnetotransport properties of Brownmillerite-like bilayered compounds Ca2.5-xLaxSr0.5GaMn2O8 (x = 0, 0.05, 0.075, and 0.1) by using dc-magnetization, resistivity and magnetoresistance techniques. The Rietveld analysis of the room temperature x-ray diffraction patterns confirms no observable change of average crystal structure with the La-substitution. Both magnetic and magnetotransport properties are found to be very sensitive to the La-substitution. Interestingly, the La-substituted compounds show ferromagnetic-like behavior (due to the occurrence of a double exchange mechanism) whereas, the parent compound is an antiferromagnet (TN 150 K). All compounds show an insulating behavior, in the measured temperature range of 100 - 300 K, with an overall decrease in the resistivity with the substitution. A higher value of magnetoresistance has been successfully achieved by the La-substitution. We have proposed an electronic phase separation model, considering the formation of ferromagnetic clusters in the antiferromagnetic matrix, to interpret the observed magnetization and magnetotransport results for the La-substituted samples. The present study demonstrates an approach to achieve new functional materials, based on naturally occurring layered system like Ca2.5-xLaxSr0.5GaMn2O8, for possible spintronics applications.
Bera A. K.
Yusuf S. M.
No associations
LandOfFree
Ferromagnetic Clusters in the Brownmillerite Bilayered Compounds Ca2.5-xLaxSr0.5GaMn2O8: An Approach to Achieve Layered Spintronics Materials does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Ferromagnetic Clusters in the Brownmillerite Bilayered Compounds Ca2.5-xLaxSr0.5GaMn2O8: An Approach to Achieve Layered Spintronics Materials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ferromagnetic Clusters in the Brownmillerite Bilayered Compounds Ca2.5-xLaxSr0.5GaMn2O8: An Approach to Achieve Layered Spintronics Materials will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-191994