Excitation spectra of fragmented condensates by linear response: General theory and application to a condensate in a double-well potential

Physics – Condensed Matter – Quantum Gases

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

revised version, 13 figures (1 figure added), 53 pages

Scientific paper

Linear response of simple (i.e., condensed) Bose-Einstein condensates is known to lead to the Bogoliubov- de Gennes equations. Here, we derive linear response for fragmented Bose-Einstein condensates, i.e., for the case where the many-body wave function is not a product of one, but of several single-particle states (orbitals). Our approach is based on the number-conserving variational time-dependent mean field theory [O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Phys. Lett. A 362, 453 (2007)], which describes the time evolution of best-mean field states. Correspondingly, we call our linear response theory for fragmented states LR-BMF. In the derivation it follows naturally that excitations are orthogonal to the ground-state orbitals. As applications excitation spectra of Bose-Einstein condensates in double-well potentials are calculated. Both symmetric and asymmetric double-wells are studied for several interaction strengths and barrier heights. The cases of condensed and two-fold fragmented ground states are compared. Interestingly, even in such situations where the response frequencies of the two cases are computed to be close to each other, which is the situation for the excitations well below the barrier, striking differences in the density response in momentum space are found. For excitations with an energy of the order of the barrier height, both the energies and the density response of condensed and fragmented systems are very different. In fragmented systems there is a class of "swapped" excitations where an atom is transfered to the neighboring well. The mechanism of its origin is discussed. In asymmetric wells, the response of a fragmented system is purely local (i.e., finite in either one or the other well) with different frequencies for the left and right fragments.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Excitation spectra of fragmented condensates by linear response: General theory and application to a condensate in a double-well potential does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Excitation spectra of fragmented condensates by linear response: General theory and application to a condensate in a double-well potential, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Excitation spectra of fragmented condensates by linear response: General theory and application to a condensate in a double-well potential will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-184312

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.