Physics – Condensed Matter – Materials Science
Scientific paper
2012-04-04
Physics
Condensed Matter
Materials Science
Accepted Europhysics Letters
Scientific paper
Exchange bias (EB) and the training effects (TE) in an antiferromagnetically coupled La0.7Sr0.3MnO3 / SrRuO3 superlattices were studied in the temperature range 1.8 - 150 K. Strong antiferromagnetic (AFM) interlayer coupling is evidenced from AC - susceptibility measurements. Below 100 K, vertical magnetization shifts are present due to the two remanent states corresponding to the two ferromagnetic (FM) layers at FM and AFM coupling condition. After field cooling (FC), significant decrease in the exchange bias field (HEB) is observed when cycling the system through several consecutive hysteresis loops. Quantitative analysis for the variation of HEB vs. number of field cycles (n) indicates an excellent agreement between the theory, based on triggered relaxation phenomena, and our experimental observations. Nevertheless, the crucial fitting parameter K indicates smooth training effect upon repeated field cycling, in accordance with our observation.
Jammalamadaka Narayana S.
Moshchalkov Victor V.
Vanacken Johan
No associations
LandOfFree
Exchange bias and training effects in antiferromagnetically coupled La0.7Sr0.3MnO3 / SrRuO3 superlattices does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Exchange bias and training effects in antiferromagnetically coupled La0.7Sr0.3MnO3 / SrRuO3 superlattices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Exchange bias and training effects in antiferromagnetically coupled La0.7Sr0.3MnO3 / SrRuO3 superlattices will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-32706