Physics – Condensed Matter – Statistical Mechanics
Scientific paper
2000-07-31
Int. J. Mod. Phys. B15, 443-478 (2001)
Physics
Condensed Matter
Statistical Mechanics
36 pages, latex, 22 figures
Scientific paper
10.1142/S0217979201004630
We present exact calculations of partition function $Z$ of the $q$-state Potts model with next-nearest-neighbor spin-spin couplings, both for the ferromagnetic and antiferromagnetic case, for arbitrary temperature, on $n$-vertex strip graphs of width $L_y=2$ of the square lattice with free, cyclic, and M\"obius longitudinal boundary conditions. The free energy is calculated exactly for the infinite-length limit of these strip graphs and the thermodynamics is discussed. Considering the full generalization to arbitrary complex $q$ and temperature, we determine the singular locus ${\cal B}$ in the corresponding ${\mathbb C}^2$ space, arising as the accumulation set of partition function zeros as $n \to \infty$.
Chang Shu-Chiuan
Shrock Robert
No associations
LandOfFree
Exact Partition Function for the Potts Model with Next-Nearest Neighbor Couplings on Strips of the Square Lattice does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Exact Partition Function for the Potts Model with Next-Nearest Neighbor Couplings on Strips of the Square Lattice, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Exact Partition Function for the Potts Model with Next-Nearest Neighbor Couplings on Strips of the Square Lattice will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-301630