Physics – Condensed Matter
Scientific paper
2003-04-22
Phys.Rev. E68 (2003) 046101
Physics
Condensed Matter
33 pages, RevTex
Scientific paper
10.1103/PhysRevE.68.046101
We extend the exact multilocal renormalization group (RG) method to study the flow of the effective action functional. This important physical quantity satisfies an exact RG equation which is then expanded in multilocal components. Integrating the nonlocal parts yields a closed exact RG equation for the local part, to a given order in the local part. The method is illustrated on the O(N) model by straightforwardly recovering the $\eta$ exponent and scaling functions. Then it is applied to study the glass phase of the Cardy-Ostlund, random phase sine Gordon model near the glass transition temperature. The static correlations and equilibrium dynamical exponent $z$ are recovered and several new results are obtained. The equilibrium two-point scaling functions are obtained. The nonequilibrium, finite momentum, two-time $t,t'$ response and correlations are computed. They are shown to exhibit scaling forms, characterized by novel exponents $\lambda_R \neq \lambda_C$, as well as universal scaling functions that we compute. The fluctuation dissipation ratio is found to be non trivial and of the form $X(q^z (t-t'), t/t')$. Analogies and differences with pure critical models are discussed.
Doussal Pierre Le
Schehr Gregory
No associations
LandOfFree
Exact multilocal renormalization on the effective action : application to the random sine Gordon model statics and non-equilibrium dynamics does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Exact multilocal renormalization on the effective action : application to the random sine Gordon model statics and non-equilibrium dynamics, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Exact multilocal renormalization on the effective action : application to the random sine Gordon model statics and non-equilibrium dynamics will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-551007