Physics – Condensed Matter – Superconductivity
Scientific paper
2004-12-04
Physics
Condensed Matter
Superconductivity
Scientific paper
10.1103/PhysRevB.72.014507
The use of artificial defects is known to enhance the superconducting critical parameters of thin films. In the case of conventional superconductors, regular arrays of submicron holes (antidots) substantially increase the critical temperature Tc(H) and critical current Ic(H) for all fields. Using electrical transport measurements, we study the effect of placing an additional small antidot in the unit cell of the array. This composite antidot lattice consists of two interpenetrating antidot square arrays with a different antidot size and the same lattice period. The smaller antidots are located exactly at the centers of the cells of the array of large antidots. We show that the composite antidot lattice can trap a higher number of flux quanta per unit cell inside the antidots, compared to a reference antidot film without the additional small antidots in the center of the cells. As a consequence, the field range in which an enhanced critical current is observed is considerably expanded. Finally, the possible stable vortex lattice patterns at several matching fields are determined by molecular dynamics simulations.
Jonckheere Raymond
Look Van L.
Moshchalkov Victor V.
Raedts S.
Silhanek Alejandro V.
No associations
LandOfFree
Enhanced vortex pinning by a composite antidot lattice in a superconducting Pb film does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Enhanced vortex pinning by a composite antidot lattice in a superconducting Pb film, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Enhanced vortex pinning by a composite antidot lattice in a superconducting Pb film will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-618218