Physics – Condensed Matter – Statistical Mechanics
Scientific paper
2001-08-08
Physics
Condensed Matter
Statistical Mechanics
Scientific paper
10.1103/PhysRevE.64.066608
We study energy relaxation in thermalized one-dimensional nonlinear arrays of the Fermi-Pasta-Ulam type. The ends of the thermalized systems are placed in contact with a zero-temperature reservoir via damping forces. Harmonic arrays relax by sequential phonon decay into the cold reservoir, the lower frequency modes relaxing first. The relaxation pathway for purely anharmonic arrays involves the degradation of higher-energy nonlinear modes into lower energy ones. The lowest energy modes are absorbed by the cold reservoir, but a small amount of energy is persistently left behind in the array in the form of almost stationary low-frequency localized modes. Arrays with interactions that contain both a harmonic and an anharmonic contribution exhibit behavior that involves the interplay of phonon modes and breather modes. At long times relaxation is extremely slow due to the spontaneous appearance and persistence of energetic high-frequency stationary breathers. Breather behavior is further ascertained by explicitly injecting a localized excitation into the thermalized array and observing the relaxation behavior.
Lindenberg Katja
Reigada Ramon
Sarmiento Antonio
No associations
LandOfFree
Energy Relaxation in Nonlinear One-Dimensional Lattices does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Energy Relaxation in Nonlinear One-Dimensional Lattices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Energy Relaxation in Nonlinear One-Dimensional Lattices will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-613028