Physics – Fluid Dynamics
Scientific paper
2006-07-30
Physics
Fluid Dynamics
14 pages
Scientific paper
10.1063/1.2425101
The rate of energy dissipation in solutions of the body-forced 3-d incompressible Navier-Stokes equations is rigorously estimated with a focus on its dependence on the nature of the driving force. For square integrable body forces the high Reynolds number (low viscosity) upper bound on the dissipation is independent of the viscosity, consistent with the existence of a conventional turbulent energy cascade. On the other hand when the body force is not square integrable, i.e., when the Fourier spectrum of the force decays sufficiently slowly at high wavenumbers, there is significant direct driving at a broad range of spatial scales. Then the upper limit for the dissipation rate may diverge at high Reynolds numbers, consistent with recent experimental and computational studies of "fractal-forced'' turbulence.
Cheskidov Alexey
Doering Charles R.
Petrov Nikola P.
No associations
LandOfFree
Energy Dissipation in Fractal-Forced Flow does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Energy Dissipation in Fractal-Forced Flow, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Energy Dissipation in Fractal-Forced Flow will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-333470