Physics – Condensed Matter
Scientific paper
1995-09-08
Phys. Rev. B 53 (1996) 15147
Physics
Condensed Matter
17 pages, PostScript file compressed and uuencoded
Scientific paper
10.1103/PhysRevB.53.15147
We use the quasiclassical theory of superconductivity to calculate the electronic contribution to the thermal conductivity. The theory is formulated for low temperatures when heat transport is limited by electron scattering from random defects and for superconductors with nodes in the order parameter. We show that certain eigenvalues of the thermal conductivity tensor are universal at low temperature, $k_B T\ll \gamma$, where $\gamma$ is the bandwidth of impurity bound states in the superconducting phase. The components of the electrical and thermal conductivity also obey a Wiedemann-Franz law with the Lorenz ratio, $L(T)=\kappa/\sigma T$, given by the Sommerfeld value of $L_{\!S}=({\pi^2}/{3})(k_B/e)^2$ for $k_BT\ll\gamma$. For intermediate temperatures the Lorenz ratio deviates significantly from $L_{\!S}$, and is strongly dependent on the scattering cross section, and qualitatively different for resonant vs.\ nonresonant scattering. We include comparisons with other theoretical calculations and the thermal conductivity data for the high $T_c$ cuprate and heavy fermion superconductors.
Graf Matthias. J.
Rainer D.
Sauls J. A.
Yip Sung Kit
No associations
LandOfFree
Electronic thermal conductivity and the Wiedemann-Franz law for unconventional superconductors does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Electronic thermal conductivity and the Wiedemann-Franz law for unconventional superconductors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronic thermal conductivity and the Wiedemann-Franz law for unconventional superconductors will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-241432