Physics – Condensed Matter – Materials Science
Scientific paper
1997-12-18
Physics
Condensed Matter
Materials Science
32 pages, 6 figures; "Fifty Years of the Correlation Problem", invited paper, to be published in Mol.Phys
Scientific paper
Theoretical descriptions of the spectrum of electronic excitations in real metals have not yet reached a fully predictive, "first-principles" stage. In this paper we begin by presenting brief highlights of recent progress made in the evaluation of dynamical electronic response in metals. A comparison between calculated and measured spectra - we use the loss spectra of Al and Cs as test cases - leads us to the conclusion that, even in "weakly-correlated" metals, correlation effects beyond mean-field theory play an important role. Furthermore, the effects of the underlying band structure turn out to be significant. Calculations which incorporate the effects of both dynamical correlations and band structure from first principles are not yet available. As a first step towards such goal, we outline a numerical algorithm for the self-consistent solution of the Dyson equation for the one-particle Green's function. The self-energy is evaluated within the shielded-interaction approximation of Baym and Kadanoff. Our method, which is fully conserving, is a finite-temperature scheme which determines the Green's function and the self-energy at the Matsubara frequencies on the imaginary axis. The analytical continuation to real frequencies is performed via Pade approximants. We present results for the homogeneous electron gas which exemplify the importance of many-body self-consistency.
Eguiluz Adolfo G.
Schoene Wolf-Dieter
No associations
LandOfFree
Electronic Excitations and Correlation Effects in Metals does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Electronic Excitations and Correlation Effects in Metals, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronic Excitations and Correlation Effects in Metals will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-324517